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CHAPTER 3 
EXPLORING THE MATHEMATICAL POTENTIAL OF SONA: 
AN EXAMPLE OF STIMULATING CULTURAL AWARENESS 

IN MATHEMATICS TEACHER EDUCATION 1 

 
3.1 Introduction: the need for a culture-oriented education  

 
Development strategies that ignore or downplay the importance 

of cultural factors provoke indifference, alienation, and social discord, 
as highlighted in the Report of the South Commission, headed by the 
former President of Tanzania, Julius Nyerere (see Nyerere, 1991). 
Alternative development strategies should use the huge reserves of 
traditional knowledge, creativity, and sense of initiative in the 
countries of the Third World (Nyerere, 1991, p. 55). The Regional 
Consultation on Education for All (Dakar, November 27-30, 1989) 
concluded that Africa needs culture-oriented education (UNESCO, 
1990, p. 6 & 15). The scientific appreciation of African cultural 
elements and experience is considered to be “one sure way of getting 
Africans to see science as a means of understanding their cultures and 
as a tool to serve and advance their cultures” (UNESCO, 1990, p. 23). 

Educate or Perish: Africa’s Impasse and Prospects, a study led 
by the historian Joseph Ki-Zerbo, shows that currently African 
educational system – unadapted and elitist – promotes foreign 
consumption without generating a culture that is both compatible with 
the original civilization and truly promising. Africa needs a “new 
educational system, properly rooted in both the society and the 
                                                      
1 Adapted version of a paper presented at the conference “The 

education of mathematics teachers in Southern Africa”, that took 
place during the 8th Symposium of the Southern African 
Mathematical Sciences Association, Maputo, 16-19 December 1991. 
Published as Chapter 9 in: Gerdes, Paulus (1995), Ethnomathematics 
and Education in Africa, Institute of International Education, 
University of Stockholm. 
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environment, and therefore apt to generate the self-confidence from 
which imagination springs” (Ki-Zerbo, 1990, p. 104). 
 
3.2 Ethnomathematics research and teacher education 

 
To avoid aversion — mathematical experience is seen as a rather 

bizarre and useless discipline of foreign origin and imported into 
Africa — the heritage, traditions and practices of mathematics in 
Africa (see Gerdes, 1992) must be “embedded”, “integrated” or 
“incorporated” into the curriculum. 

In order to gradually prepare an educational reform that ensures 
that real mathematics education “in tune with African traditions and 
socio-cultural environment” (UNESCO, 1990, p. 14) we started 
ethnomathematics research studies in Mozambique. 

Ethnomathematics analyzes the connections between cultural 
development and mathematics education (see e.g. D’Ambrosio, 1990 
and Gerdes, 1991), and more particularly studies:  
* The mathematical traditions that have survived colonization, and 

math activities in the daily lives of people, seeking ways to 
integrate them into the school curriculum.  

* The cultural elements that can serve as a starting point to develop 
mathematics at school and outside school.  
Given that teachers play a fundamental role in (successful) 

curriculum reform, their training is a strategic time for debate and 
experimentation with ‘cultural embedding of mathematics education’.  

In our article On culture, geometrical thinking and mathematics 
education (1988) (reprinted in Gerdes, 1991), we gave some examples 
of “cultural awareness raising” of future teachers of mathematics: the 
construction of houses in Mozambique and the study of alternative 
axiomatic construction of Euclidean geometry; the weaving of funnels 
as a source of inspiration for discovering a general method for the 
construction of regular polygons; from interweaving of buttons to the 
“Pythagorean theorem”; from traditional traps for fishing to an 
alternative trigonometric function, tilings and the generation of regular 
and semi-regular polyhedra. This time, we would like to show how 
future teachers can carry out investigations by studying the cultural 
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context and history of southern Africa, opening a new path in 
mathematical research. As an illustration, we will explore the 
mathematical potential of sona. 

 

3.3 Examples of exploration of the mathematical potential of sona 
in teacher training  

 
Sona offer a rich context for exploring mathematics. In general, 

it is important for future teachers of mathematics to understand what it 
means to do mathematics: that is to say, experiment, discover and 
formulate hypotheses, prove theorems. The study of sona and similar 
drawings provides — in Southern Africa — an appealing and 
culturally well-integrated context, where the sense of mathematics can 
be developed, as shown by the following examples.  

 

Rules of composition  

 
The (re-)discovery and demonstration of traditional Cokwe rules 

(as reconstructed) can be used to build up larger monolinear drawings 
enlarged from smaller monolinear drawings (cf. Vol. 1, Chapters 5 and 
6). These rules are particularly adapted to research by future 
professors. Figure 3.1 shows a rule that was applied four times in the 
traditional representation of a leopard with her five small (see figure 
3.2b). 

 

 
 

Figure 3.1 
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a     b  

Figure 3.2 
 

 
 

Figure 3.3 
 

Systematic construction of monolinear drawings 
 
*  First example  
 
Figure 3.3 shows the left half of a lusona. We can consider this 

to have been built from the “triangular pattern” of figure 3.4a, 
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connecting the ends a, b, c, d, A, B, C, D according to the order 
DaAbBcCdD. Many questions, which encourage further consideration 
and a subsequent analysis, may arise, for example:  
* Can we connect the ends of these monolinear drawings in a 

different order? (Figure 3.4b gives an example). If so, how many 
combinations are possible?  

* How many ways can we construct monolinear drawings, when 
each side of the “rectangular design” has n ends instead of 4?  

* How many of these are symmetric, as with the lusona in figure 
3.3?  

 

A
B

C
D

a
d

c
b

 
 

Figure 3.4  
 
Second example  
 
The lusona of figure 3.5 represents a bird in flight. It is 

symmetrical and monolinear. How can we now represent three birds 
flying in a V formation, so that the figure is both symmetric and 
monolinear?  
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Figure 3.5  

 

 
 

Figure 3.6  
 
The basic pattern can be the one shown in figure 3.6. By 

connecting the ends, as shown in figure 3.7 one obtains, in fact, a 
symmetrical design, but this design is 2-linear (see figure 3.8). If we 
call the ends of the first line of a basic pattern a and A, those of the 
second line b and B, those of the third c and C and those of the fourth, 
d and D respectively (see figure 3.9) and linking these ends by the 
aAdDbBCca sequence (see the diagram in figure 3.10) we can see that 
we get a monolinear and symmetrical drawing (see figure 3.11). We 
can then ask the following questions: are there other solutions? How 
can we depict larger formations of Vs?  
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Figure 3.7  
 

 
 

Figure 3.8  
 

aA

bB

cC d D 
 

Figure 3.9  
 



Paulus Gerdes: Sona Geometry from Angola 

68 

 
aA

B b

DdcC  
 

Figure 3.10  
 

 
 

Figure 3.11  
 
Systematic analysis of the base pattern (see figure 3.12) of a 

formation of 3 rows of birds allows us to conclude that there is no 
pattern which is both symmetrical and monolinear that represents six 
birds flying in a filled-V formation. Can the case analysis of 10 birds 
in 4 rows be more successful? The basic pattern (figure 3.13) may be 
completed as shown in figure 3.14, using the sequences aAHhdDEea 
and bBGgcCFfb. The design is symmetric and 2-linear. Following the 
order aAHhdDEebBGgcCFfa, we obtain a monolinear figure, which, 
however, is not symmetrical (see figure 3.15). Is there a solution, 
which is both symmetrical and monolinear?  
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Are there any filled-V formations of birds in 5 or more rows, 
which are both symmetrical and monolinear? 2 

 

A

B

C

a

b

c

D d E e F f 
Figure 3.12  

 

                                                      
2 The translator has provided a proof, in appendix 1, that no such formation is 
possible, but shows students how to create “open-V” formations which are 
both symmetric and monolineal. 
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A

B

C

D

a

b

c

d

E e F f G g H h 
Figure 3.13  

 

 
 

Symmetric and 2-linear design 
Figure 3.14  
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Monolinear and almost symmetrical design 
Figure 3.15  
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a b

c  
Figure 3.16  

 
How many lines are needed?  
 

 * First example  
 
The Cokwe lusona of figure 3.16a represents the lion’s stomach. 

Its dimensions are 4 x 5 and it is monolinear (see Vol. 1, figure 123). 
Figure 3.16b has dimensions 6 x 5. The same algorithm was applied to 
two designs (see figure 3.16c). When using the same algorithm in the 
case of a reference grid having dimensions of 3 x 7, three lines are 
necessary to enclose all points of this grid (see figure 3.17). One might 
ask, how does the number of lines depend on the dimensions m and n 
of the grid?  
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     a         b  

Figure 3.17  
 
When the width (n) is an even number, the picture does not look 

like the lion’s stomach (see figure 3.18). Therefore we have to 
consider only odd numbers for n. For the same reason, the height m 
must be equal to or greater than 2.  

 

 
 

Figure 3.18  
 
Students and future teachers can try replacing m and n with 

concrete numbers, draw figures, counting the lines and collect the data 
thus obtained on a chart like the one presented below.  

 
 n 3 5 7 9 11 13 15 17 

m          
2  2 1 2 1 2    
3  3 1 3 1     
4  4 1 4      
5  5        
6  6   1     
7          
8          
9          
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The extrapolation on the basis of this experimental data may lead 
to the following table:  
 

 n 3 5 7 9 11 13 15 17 
m          

2  2 1 2 1 2 1 2 1 
3  3 1 3 1 3 1 3 1 
4  4 1 4 1 4 1 4 1 
5  5 1 5 1 5 1 5 1 
6  6 1 6 1 6 1 6 1 
7  7 1 7 1 7 1 7 1 
8  8 1 8 1 8 1 8 1 
9  9 1 9 1 9 1 9 1 

 

and the statement of a hypothesis such as:  
The number of lines in a “lion’s stomach” needed to enclose all 
points of a grid for dimensions m x n is equal to 1 if n = 4p+l and 
equal to m if n ! 4p+l, where p represents any natural number.  
 
Now, students and future teachers can test this hypothesis. For 

example, is this assumption correct in the case where m = 4 and n = 13 
(see the monolinear drawing of figure 3.19)?  

The next question is: how to prove this hypothesis? 3  

 

 
 

Figure 3.19  
 

 
 
 

 
                                                      
3 See Appendix 2 for a proof of this conjecture. 
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APPENDIX 1 
SONA OF BIRDS FLYING IN FORMATION 

 
In this appendix, we explain why there are no monolinear, 

symmetric sona designs built from 3 or more full rows of the birds as 
shown in figures 3.5–3.15. However, if we look at “V” shapes of these 
birds, it turns out that there are many such sona that can be built from 
those layouts. 

To simplify our analysis, instead of the full bird of figure 
3.32(a), we use the simplification of the box of 3.32(b), which shows 
the entrance and exit lines for the two curves (gray and black) that 
make up the bird, but without the turns they take to get there. Although 
less artistic, such boxes make it easier to think about where the lines 
will be going in a larger drawing. 
 

 
 

a b 
Figure 3.32 

 
To consider a formation of many birds, we arrange copies of our 

box figure with the connections between boxes that are mandatory, 
and label the remaining edge segments as shown in figure 3.33. We 
assume that the number “n” of edges of type A, B, D, and E is at least 
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3, corresponding to at least three rows of birds. Our goal is then to add 
curves connecting these various endpoints to create the desired type of 
lusona. 
 

 
 

A flock of 4 rows of birds 
Figure 3.33 

 
Now we imagine that there is some collection of connecting 

curves that would result in a monolinear, symmetric lusona, and we try 
to determine what properties those additional curves must have. First 
we show: 
Lemma A.1: Every side edge, Ai or Bi, in a “flock of birds” lusona 

must connect to a bottom edge, Dj or Ej. 

Proof: We use a proof by contradiction. Instead of the claim, imagine 
there is a connecting curve from Ai to Aj (See figure 3.34 for 
an example with i = 2 and j = 3.) Then since the final design 
must be symmetric, we must also have a connection from Bi to 
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Bj. But then we can see from figure 3.33 that Ai is also 
connected to Bi, and Ai to Bj. So then we would have a closed 
loop that travels from Ai to Aj, across to Bj, to Bi and then 
back to Ai. This loop of our drawing only connects two rows, i 
and j, hence cannot include all of the birds. 
The other way we might connect two side edges is if Ai were 
connected to a Bj. Then, by symmetry, Aj also connects to Bi. 
Much like before, this creates a closed loop that travels from Ai 
to Bj, across to Aj, to Bi, and then back to Ai. Once again, this 
falls short of drawing in all of the birds. 

 

 
 

Side edges cannot be connected 
Figure 3.34 

 
Of course since there are as many “side edges” as there are 

“bottom edges”, this also means: 
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Corollary: Every bottom edge, Di or Ei, in a “flock of birds” lusona 
must connect to a side edge, Aj or Bj. 
 

This is enough information to allow us to prove the conjecture 
about flocks of birds: 
 
Theorem A.2:  All “flocks of birds” sona with 3 or more rows are  

either asymmetric or else are m-linear for m ! 2. 
 
Proof: Imagine that there was a connection from, say, Ai to Dj. Then 

by symmetry we would also have a connection from Bi to Ej. 
As an example, figure 3.35 shows this situation with i =3 and j 
= 5. Now a curve coming into Dj flows through to Dk, where k 
= j ± 1, hence (by symmetry) Ej flows through to Ek for the 
same k. Then by the corollary, Dk and Ek are both connected 
to the A and B of some second row, say row r. Now we have a 
closed loop that travels from Ai to Dj to Dk to (A or B)r to (B 
or A)r to Ek to Ej to Bi to Ai. Since this loop only hits two of 
the “A–B” rows (rows i and r) plus two birds in the bottom 
row, this circuit cannot reach all of the birds in the flock. 

 
We conclude that a full flock of birds cannot be drawn with a 

symmetric, monolinear lusona no matter how we add curves to 
connect the various elements. However, we can draw such sona with 
very similar configurations. Consider a “V” of such birds, as shown in 
figure 3.36. Now it will always be possible to draw a symmetric, 
monolinear lusona that contains all of these birds, and there will be 
many ways to do it! In fact, it’s possible to count exactly how many 
mathematically different such sona there can be. 
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Figure 3.35 
 

In the “V” of birds in figure 3.36, let us consider where the edges 
from A1 and B1 can connect to. If either one connects to A2, then by 
symmetry the other one connects to B2, and we get a closed loop in 
rows 1 and 2. In fact, if we imagine one hand drawing from A1 while 
the other draws symmetrically from B1, then when we reach that 
second row, we will close a loop—our two hands will reach the center 
of row 2 at the same time. When this happens, we will be finished 
drawing. To prevent this from happening too soon, we must traverse 
all of the curves on the other rows of birds before we return to row 2. 
So imagine drawing with one hand from A1 to any one of the open 
edges on row i (Figure 3.37 shows an example where i = 3). By 
symmetry, our other hand draws from B1 to the symmetric open edge 
on row i, our two hands traverse the two birds on row i, and all of row 
i will now be part of our design. So now we go from those 2 edges on 
row i to any symmetric pair of edges on row j (row 5 in figure 3.37), 
again drawing all of row j, etc. Every time we go from one row to the 
next, we have four choices for where the “A” drawing hand can go 
(any of the four edge connections on that row), and the choice where 
the “B” drawing hand will then be forced. To make sure we never 
reach row 2 until we have drawn all of the other n rows, we need to 
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find a sequence of all the numbers from 3 to n+1 (since there are n+1 
rows of open edges with n rows of birds) without repeating a number, 
at which point we will return to row 2 (with 2 choices for where hand 
“A” goes). In figure 3.37, for example, we have chosen the sequence 
to be 1, 3, 5, 4, 2. A valid sequence here must start with 1, end with 2, 
and has all of the numbers 3 … n+1 in between, which can be done in 
(n–2)! different ways. We have left the final choice in figure 3.37, 
moving from row 4 to row 2, unspecified to emphasize the two 
options. 
 

 
 

A “V” of 4 rows of birds 
Figure 3.36 
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A “V” of 4 rows of birds (5 rows of curves) 
Figure 3.37 

 
Since each time we move to a new row, other than row 2, we 

have 4 choices of how to connect, and we make this choice (n–1) 
times, we will have 4(n–1) possible choices of edges as we travel 
across all of these rows, and 2 choices when we finally go to row 2 
(i.e., do we go to A2 or B2?). The total number of ways we can select a 
sequence of rows to visit, combined with which of the edges on that 
row we go to, tells us that the number of ways to draw such a lusona 
will be:  

! 

2"4(n # 1) *  n #1( )! 

The first few values of this number are: 
 

Rows of birds: 2 3 4 5 
Number of sona: 8 64 768 12,288 

 
So there are many ways to draw a V of birds with symmetric, 

monolinear sona! The eight sona with a 2-row V design of birds are 
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easy to describe: Start at A1, then go to any of the 4 connections in the 
3rd row of curves, pass through that bird, then go to either of the 2 
connections in the 2nd row of curves, for a total of 4*2 possibilities. 
Once you decide where to draw the curve from A1, you also know 
what happens with the curve from B1, by symmetry. Of course to find 
a way to draw these curves so that they are artistically pleasing is still 
a challenge! We invite the student to look at the examples in figures 
3.7 to 3.15 and try to find a particularly pleasing way to draw one of 
these 8 options. Re-drawing the two sona implied by figure 3.37 using 
something other than circular arcs (as shown here) can provide artistic 
options itself. Then, for a bigger challenge, try to find an artistically 
pleasing lusona from one of the larger “V” formations, e.g. with 3, 4, 
or 5 rows of birds in addition to those of figure 3.37. 
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APPENDIX 2 
LION’S STOMACH SONA  

In this appendix, we study the Lion’s Stomach sona in more detail, 
leading to a proof of the author’s conjecture about the number of lines 
needed for such a sona. But first we must take a side trip to investigate 
some properties of “sona design strips”. By this, we imagine taking a 
rectangular n x m lusona design and cutting it into pieces with parallel 
lines midway between columns (or rows) of dots. The lusona S of 
figure 1, for example, has been cut into the pieces A, B, C, and D by 
the three lines shown, and we write this equivalence as S = ABCD.  
 

 
 

 
 
In some cases, it is possible to take a pair of strips of the same height 
and combine them to create either a larger strip or a proper lusona. To 
combine strips X and Y (of the same height) to form the larger strip 
XY, the right side of X and the left side of Y must have sets of walls in 
identical locations. In the example of figure 1, all 3 cutting lines hit 
walls in exactly equivalent places, hence we can combine these 
segments in several ways to create various sona including AD, ABD, 

Figure 1: A lusona cut into 4 “strips”, A, B, C, and D 
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ACD, ABBD, etc. Figure 2 shows the lusona that is equivalent to 
ABBD, which we also write as AB2D.  
 

 
 
 

Although the original ABCD and this ABBD are both legitimate sona 
designs, ABCD is a one-line sona, while AB2D is a 3-line sona. Under 
certain circumstances, though, it is possible to guarantee that certain 
combinations of these strips will produce one-line sona. The primary 
result here is: 
 
The Pumping Lemma: Let S be a rectangular k-line lusona cut into 

three strips by the two parallel lines L1 and L2, so that S = ABC, 
and where: 
1. The intersections of L1 and L2 with S meet walls in identical 

locations; 
2. There is no line of S that is completely contained inside B; and 
3. Every line of S that enters B on the left exits it on the right at the 

same height, and traveling in the same direction, i.e. either both 
are directed 45° up (to the right) or 45° down (to the right). 

Then all lusona Si = ABiC are also k-line sona, for i = 0, 1, 2, …. 

We call this the “pumping lemma” (after a similarly named theorem in 
computer science) because additional copies of “B” can be “pumped 
in” to the inside of the lusona, or the single copy in the original can be 
“pumped out”.  

Figure 2: The same strips combined as ABBD 
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Proof: By condition #1, the number of lines coming into B on the left 

must be exactly the same as the number leaving B on the right. 
With condition #3, this means that every line in B that meets the 
right edge of B must have come from an edge that entered B on the 
left. From this we can conclude that there can be no line of Si that 
is completely contained inside the sequence of strips Bi. If there 
were, then that line would have a left most strip Bj through which 
it traveled, and hence by condition #2 it would also travel through 
strip Bj+1, which would violate our second sentence.  

  Now each line of S that enters B on the left at height h also 
exits it at height h (see figure #3 for some possible examples). 
Then with several copies of B in succession, that line would enter 
the left most edge of Bi at height h and leave the full Bi on the 
right at the same height. Thus regardless of the number of copies 
of B (including none), lines in A and C will be connected in 
exactly the same ways, in exactly the same order. Thus these lines, 
and their connecting segments through Bi, will create the same 
number of total lines as in S. By the previous paragraph, there can 
be no other lines of Si not included in this count, hence Si is also a 
k-line lusona.  ! 

 

 
 

 
 

Figure 3: Sona lines passing through strip B. 
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We can use this lemma to analyze many different classes of sona 
designs, including the author’s conjecture on the “Lion’s Stomach” 
class of sona. These designs exist for any rectangle with an odd 
number of columns and at least two rows of dots. Gerdes conjectures 
that if a “Lion’s Stomach” design is built on a sona grid of width n = 
2k + 1 and height m = j, then the number of lines required for the 
lusona will be 1 when k is even, and will be m when k is odd. We will 
show why this is true. 
Figure 4 shows the 6 x 13 Lion’s Stomach lusona in two views: The 
top shows the lusona without the walls, as it would be drawn in the 
sand by the Cokwe/Chokwe. The bottom shows the lusona with the 
walls that imply the drawing of the design, but here we also show two 
copies of a central strip that meets the requirements of the Pumping 
Lemma. For ease of verification, we have shown only four of the lines 
that go across these strips; all of the undrawn lines can be seen (by the 
pattern of the walls) to be equivalent to one of these. The Pumping 
Lemma tells us that we can remove all of these strips from Lion’s 
Stomach sona without changing the number of lines in these sona.  
 

 
 

 

Figure 4: The"Lion's Stomach" sona meets the conditions of 
the Pumping Lemma with a strip of width 4. 
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This tells us that: 
Corollary (to the Pumping Lemma): If S is a Lion’s Stomach lusona 
of width n = 4k + 1 and height m = j, then it requires the same number 
of lines to draw as a Lion’s Stomach lusona of width 5 and height j. If 
S is a Lion’s Stomach lusona of width n = 4k + 3 and height m = j, 
then it requires the same number of lines to draw as a Lion’s Stomach 
lusona of width 3 and height j. 
 
Thus we need only understand these designs for width 3 and 5, and we 
will understand all such designs. For convenience, we show the 3 x 8 
and 5 x 8 Lion’s Stomach designs in figure 5.  

 

 
 

Figure 5: Lion's 
Stomach sona of 
sizes 3 x 8 and 5 x 8. 
With the 3 x 8 
lusona, multiple 
lines are shown in 
colors. The 5 x 8 is a 
one-line lusona. 

 
 
 
 

It is easy to see the pattern in the 3 x j Lion’s Stomach that results in it 
requiring j lines to be drawn, demonstrating this part of Gerdes’ 
conjecture. The 5 x 8 lusona is monolineal. Figure 6a shows a 
continuous segment of this line colored in green, which is the only 
portion of the curve which traverses the bottom row of dots of the 
lusona. If we replace this green segment with the one in figure 6b, 
which starts and ends in the same place, we have drawn the 5 x 7 
Lion’s Stomach lusona using the same number of lines, i.e. one line.  
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Figure 6: Lion's Stomach sona of sizes 5 x 8, showing 
the reduction to the 5 x 7 Lion’s Stomach. 

 
Thus we have proved Gerdes’ conjecture: 
 
Theorem: “Lion’s Stomach” sona of width 4k+1, regardless of height, 
are always monolineal sona. A “Lion’s Stomach” lusona of width 4k + 
3 and height m = j is a j-line lusona. 
 
 

 


